THE SCIENTIFIC METHOD

QUESTION
The _____________ starts when you ask a ________________ about something you _______________.

__________?
__________?
__________?
__________?
It needs to be __________________!

RESEARCH
Don't start from ____________!
Research what is already ________________ about your question. ________________ from others who may have already conducted ________________.
Your question may already be __________________.

COLLECT DATA
Collect all of your _______ and ________________ in a __________________. Record it _______ and don’t try to make it ______ your ________________! Use correct _______________.

EXPERIMENT
Designed to ______ your _______________. It should be a ______ test with appropriate ____________ and should be ____________ by you and be able to be repeated by ________________.

HYPOTHESIS
A hypothesis is an educated ____________ about the ____________ to your question. It allows for a ____________.
It needs to be easy to ________________ and not based on non-testable ________________.

ANALYZE
________________ and analyze your _________. It may help to use a ____________ or ____________ to help ____________ your data.
Did you get any unexpected ____________?

CONCLUSION
Developing a ____________ is the point when you reach a ________________ about your _______________. Was it ____________ or ____________? If it was wrong, you may go ____________ and ____________ it.

REPORT
Regardless if your _______________ was ____________ or ____________, you now have ________________ to ________________! It could be through a ____________ to your classmates, a ________________ or even published in a ________________.
THE SCIENTIFIC METHOD

GO

QUESTION

RESEARCH

COLLECT DATA

EXPERIMENT

HYPOTHESIS

ANALYZE

CONCLUSION

REPORT
THE

SCIENTIFIC METHOD
The **question** starts when you ask a **question** about something you **observe**.

Why?
How?
When?
What?
It needs to be testable!

Don't start from **nothing**! Research what is already **known** about your question. **Learn** from others who may have already conducted **experiments**. Your question may already be **answered**!

Collect all of your **data** and **observations** in a **journal**. Record it **accurately** and don't try to make it **fit** your **hypothesis**! Use correct **units**.

A hypothesis is an educated **guess** about the **answer** to your question. It allows for a **prediction**. It needs to be easy to **measure** and not based on non-testable **opinion**.

Did you get any unexpected **results** or **errors**?

Developing a **conclusion** is the point when you reach a **determination** about your **hypothesis**. Was it **right** or **wrong**? If it was wrong, you may go back and **revise** it.

Regardless if your **hypothesis** was **right** or **wrong**, you now have **information** to **share**! It could be through a **report** to your classmates, a **science fair** or even published in a **science journal**.